TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI EM REDUÇÃO LSZ
TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI
TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.
FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA. [EQUAÇÃO DE DIRAC].
+ FUNÇÃO DE RADIOATIVIDADE
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ ENTROPIA REVERSÍVEL
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
ENERGIA DE PLANCK
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG
XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
sistema de dez dimensões de Graceli + DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..
- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
xsistema de transições de estados, e estados de Graceli, ESTADOS DE GRACELI TÉRMICOS E ESTADOS DOS ELEMENTOS QUÍMICO, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
número atômico, estrutura eletrônica, níveis de energia - TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG l
N l El tf l P l Ml tfefel Ta l Rl Ll * D
X [ESTADO QUÂNTICO].
Em física, a gravidade quântica canônica, gravidade canônica ou relatividade quântica canônica é uma tentativa de quantizar a formulacão canônica da relatividade geral. É uma formulação hamiltoniana da Teoria Geral da Relatividade de Einstein.
A teoria básica foi descrita por Bryce DeWitt em um articulo formal em 1967[1], baseando-se em um trabalho prévio de Peter G. Bergmann,[2] usando as chamadas técnicas de quantização canônica para sistemas hamiltonianos limitados inventadas por P. A. M. Dirac.[3] O enfoque de Dirac permite a quantização de sistemas que incluem simetrias de gauge usando técnicas hamiltonianas em uma eleição de gauge fixa. Novos enfoques, baseados em parte no trabalho de DeWitt e Dirac, incluem o estado de Hartle-Hawking, o cálculo de Regge, a equação de Wheeler-DeWitt e a gravidade quântica em loop.
A quantização se baseia na decomposição do tensor métrico tal como segue,
- X
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+ FUNÇÃO TÉRMICA.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, ESTADOS DE GRACELI TÉRMICOS E ESTADOS DOS ELEMENTOS QUÍMICO, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl * D
Em física, a gravidade quântica canônica, gravidade canônica ou relatividade quântica canônica é uma tentativa de quantizar a formulacão canônica da relatividade geral. É uma formulação hamiltoniana da Teoria Geral da Relatividade de Einstein.
A teoria básica foi descrita por Bryce DeWitt em um articulo formal em 1967[1], baseando-se em um trabalho prévio de Peter G. Bergmann,[2] usando as chamadas técnicas de quantização canônica para sistemas hamiltonianos limitados inventadas por P. A. M. Dirac.[3] O enfoque de Dirac permite a quantização de sistemas que incluem simetrias de gauge usando técnicas hamiltonianas em uma eleição de gauge fixa. Novos enfoques, baseados em parte no trabalho de DeWitt e Dirac, incluem o estado de Hartle-Hawking, o cálculo de Regge, a equação de Wheeler-DeWitt e a gravidade quântica em loop.
A quantização se baseia na decomposição do tensor métrico tal como segue,
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde a soma dos índices repetidos é implícita, o índice 0 indica tempo , os índices gregos tomam todos los valores 0,...,3 e os índices latinos tomam os valores especiais 1,...3. A função se chama a função lapso e as funções se chamam funções shift. Os índices espaciais aumentam e decrescem usando a métrica espacial e sua inversa : e , ,
X
onde a soma dos índices repetidos é implícita, o índice 0 indica tempo , os índices gregos tomam todos los valores 0,...,3 e os índices latinos tomam os valores especiais 1,...3. A função se chama a função lapso e as funções se chamam funções shift. Os índices espaciais aumentam e decrescem usando a métrica espacial e sua inversa : e , ,
X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde é o delta de Kronecker. Com esta decomposição, a lagrangiana de Einstein-Hilbert se converte em derivadas totais,
- X
onde é o delta de Kronecker. Com esta decomposição, a lagrangiana de Einstein-Hilbert se converte em derivadas totais,
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde é a curvatura escalar espacial calculada com respeito à métrica de Riemann e é a curvatura extrínseca,
- X
onde é a curvatura escalar espacial calculada com respeito à métrica de Riemann e é a curvatura extrínseca,
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde dá uma diferenciação covariante com respeito à métrica . DeWitt descreve que a lagrangiana "tem a forma clássica de 'energia cinética menos energia potencial', com a curvatura extrínseca desempenhando o papel da energia cinética e o oposto da curvatura intrínseca, o da energia potencial." Ainda que esta forma da lagrangiana é manifestamente invariante se redefinem-se a coordenadas espaciais, fazendo opaca a covariância geral.
Como as funções lapso e shift podem ser eliminadas por uma transformação de gauge, não representam graus físicos de liberdade. Isto se indica movendo-nos ao formalismo hamiltoniano pelo fato de seus momentos conjugados, respectivamente, e , desaparecem de forma idêntica (on shell e off shell). Isto é o que Dirac chama limitações primárias. Uma eleição popular de gauge chamada gauge síncrono, é e , ainda que, em princípio, pode ser eleita qualquer função das coordenadas. Neste caso, o hamiltoniano toma a forma
- X
onde dá uma diferenciação covariante com respeito à métrica . DeWitt descreve que a lagrangiana "tem a forma clássica de 'energia cinética menos energia potencial', com a curvatura extrínseca desempenhando o papel da energia cinética e o oposto da curvatura intrínseca, o da energia potencial." Ainda que esta forma da lagrangiana é manifestamente invariante se redefinem-se a coordenadas espaciais, fazendo opaca a covariância geral.
Como as funções lapso e shift podem ser eliminadas por uma transformação de gauge, não representam graus físicos de liberdade. Isto se indica movendo-nos ao formalismo hamiltoniano pelo fato de seus momentos conjugados, respectivamente, e , desaparecem de forma idêntica (on shell e off shell). Isto é o que Dirac chama limitações primárias. Uma eleição popular de gauge chamada gauge síncrono, é e , ainda que, em princípio, pode ser eleita qualquer função das coordenadas. Neste caso, o hamiltoniano toma a forma
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde
- X
onde
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
e é o momento de conjugar a . As equações de Einstein podem ser recuperadas tomando colchetes de Poisson com o hamiltoniano. Limitações on-shell adicionais, chamadas limitações secundárias por Dirac, surgem da consistência da álgebra de Poisson. São e . Esta é a teoria que está sendo quantizada em aproximações à gravidade quântica canônica.
Na física teórica, a Equação de Wheeler–DeWitt é uma equação derivada funcional mal definida para o caso geral, porém muito importante para a teoria da gravidade quântica.[1] A equação possui a forma de um operador que age numa função de onda, que se reduz numa função cosmológica. Ao contrário do caso geral, a equação de Wheeler–DeWitt é bem definida para espaços pequenos.
A equação foi proposta em 1967 por Bryce DeWitt e foi nomeada em homenagens aos físicos Bryce DeWitt e John Archibald Wheeler.[2]
e é o momento de conjugar a . As equações de Einstein podem ser recuperadas tomando colchetes de Poisson com o hamiltoniano. Limitações on-shell adicionais, chamadas limitações secundárias por Dirac, surgem da consistência da álgebra de Poisson. São e . Esta é a teoria que está sendo quantizada em aproximações à gravidade quântica canônica.
Na física teórica, a Equação de Wheeler–DeWitt é uma equação derivada funcional mal definida para o caso geral, porém muito importante para a teoria da gravidade quântica.[1] A equação possui a forma de um operador que age numa função de onda, que se reduz numa função cosmológica. Ao contrário do caso geral, a equação de Wheeler–DeWitt é bem definida para espaços pequenos.
A equação foi proposta em 1967 por Bryce DeWitt e foi nomeada em homenagens aos físicos Bryce DeWitt e John Archibald Wheeler.[2]
Definição
A Equação de Wheeler–DeWitt pode ser escrita da seguinte forma
- X
A Equação de Wheeler–DeWitt pode ser escrita da seguinte forma
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde é o hamiltoniano restrito numa relatividade geral quantizada e é a função de onda relativa ao espaço de Hilbert.
A equação de Wheeler–DeWitt busca adaptar a equação de Schrödinger ao espaço-tempo curvo da relatividade geral.
onde é o hamiltoniano restrito numa relatividade geral quantizada e é a função de onda relativa ao espaço de Hilbert.
A equação de Wheeler–DeWitt busca adaptar a equação de Schrödinger ao espaço-tempo curvo da relatividade geral.
Comentários
Postar um comentário